Wednesday, August 13, 2008




A light-emitting diode (LED) (pronounced /ˌɛliːˈdiː/),[1] is a semiconductor diode that emits light when an electrical current is applied in the forward direction of the device, as in the simple LED circuit. The effect is a form of electroluminescence where incoherent and narrow-spectrum light is emitted from the p-n junction.

LEDs are widely used as indicator lights on electronic devices and increasingly in higher power applications such as flashlights and area lighting. An LED is usually a small area (less than 1 mm2) light source, often with optics added to the chip to shape its radiation pattern and assist in reflection [2] [3]. The color of the emitted light depends on the composition and condition of the semiconducting material used, and can be infrared, visible, or ultraviolet. Besides lighting, interesting applications include using UV-LEDs for sterilization of water and disinfection of devices [4], and as grow light to enhance photosynthesis in plants[5].

LED technology

[edit] Physical principles

I-V diagram for a diode an LED will begin to emit light when the on-voltage is exceeded. Typical on voltages are 2-3 VoltLike a normal diode, the LED consists of a chip of semiconducting material impregnated, or doped, with impurities to create a p-n junction. As in other diodes, current flows easily from the p-side, or anode, to the n-side, or cathode, but not in the reverse direction. Charge-carriers—electrons and holes—flow into the junction from electrodes with different voltages. When an electron meets a hole, it falls into a lower energy level, and releases energy in the form of a photon.

The wavelength of the light emitted, and therefore its color, depends on the band gap energy of the materials forming the p-n junction. In silicon or germanium diodes, the electrons and holes recombine by a non-radiative transition which produces no optical emission, because these are indirect band gap materials. The materials used for the LED have a direct band gap with energies corresponding to near-infrared, visible or near-ultraviolet light.

LED development began with infrared and red devices made with gallium arsenide. Advances in materials science have made possible the production of devices with ever-shorter wavelengths, producing light in a variety of colors.

LEDs are usually built on an n-type substrate, with an electrode attached to the p-type layer deposited on its surface. P-type substrates, while less common, occur as well. Many commercial LEDs, especially GaN/InGaN, also use sapphire substrate.


[edit] Light extraction
The refractive index of most LED semiconductor materials is quite high, so in almost all cases the light from the LED is coupled into a much lower-index medium. The large index difference makes the reflection quite substantial (per the Fresnel coefficients). The produced light gets partially reflected back into the semiconductor, where it may be absorbed and turned into additional heat; this is usually one of the dominant causes of LED inefficiency. Often more than half of the emitted light is reflected back at the LED-package and package-air interfaces.

The reflection is most commonly reduced by using a dome-shaped (half-sphere) package with the diode in the center so that the outgoing light rays strike the surface perpendicularly, at which angle the reflection is minimized. Substrates that are transparent to the emitted wavelength, and backed by a reflective layer, increase the LED efficiency. The refractive index of the package material should also match the index of the semiconductor, to minimize back-reflection. An anti-reflection coating may be added as well.

The package may be colored, but this is only for cosmetic reasons or to improve the contrast ratio; the color of the packaging does not substantially affect the color of the light emitted.

Other strategies for reducing the impact of the interface reflections include designing the LED to reabsorb and reemit the reflected light (called photon recycling) and manipulating the microscopic structure of the surface to reduce the reflectance, by introducing random roughness, creating programmed moth eye surface patterns. Recently photonic crystal have also been used to minimize back-reflections [15]. In December 2007, scientists at Glasgow University claimed to have found a way to make LEDs more energy efficient, imprinting billions of holes into LEDs using a process known as nanoimprint lithography.[16]


[edit] Materials
Conventional LEDs are made from a variety of inorganic semiconductor materials, producing the following colors:

Aluminium gallium arsenide (AlGaAs) — red and infrared
Aluminium gallium phosphide (AlGaP) — green
Aluminium gallium indium phosphide (AlGaInP) — high-brightness orange-red, orange, yellow, and green
Gallium arsenide phosphide (GaAsP) — red, orange-red, orange, and yellow
Gallium phosphide (GaP) — red, yellow and green
Gallium nitride (GaN) — green, pure green (or emerald green), and blue also white (if it has an AlGaN Quantum Barrier)
Indium gallium nitride (InGaN) — 450–470 nm — near ultraviolet, bluish-green and blue
Silicon carbide (SiC) as substrate — blue
Silicon (Si) as substrate — blue (under development)
Sapphire (Al2O3) as substrate — blue
Zinc selenide (ZnSe) — blue
Diamond (C) — ultraviolet
Aluminium nitride (AlN), aluminium gallium nitride (AlGaN), aluminium gallium indium nitride (AlGaInN) — near to far ultraviolet (down to 210 nm[17])
With this wide variety of colors, arrays of multicolor LEDs can be designed to produce unconventional color patterns.[18]


[edit] Ultraviolet and blue LEDs



Ultraviolet GaN LEDs.Blue LEDs are based on the wide band gap semiconductors GaN (gallium nitride) and InGaN (indium gallium nitride). They can be added to existing red and green LEDs to produce the impression of white light, though white LEDs today rarely use this principle.

The first blue LEDs were made in 1971 by Jacques Pankove (inventor of the gallium nitride LED) at RCA Laboratories.[19] However, these devices had too little light output to be of much practical use. In the late 1980s, key breakthroughs in GaN epitaxial growth and p-type doping by Isamu Akasaki and Hiroshi Amano (Nagoya, Japan)[20] ushered in the modern era of GaN-based optoelectronic devices. Building upon this foundation, in 1993 high brightness blue LEDs were demonstrated through the work of Shuji Nakamura at Nichia Corporation.[21]

By the late 1990s, blue LEDs had become widely available. They have an active region consisting of one or more InGaN quantum wells sandwiched between thicker layers of GaN, called cladding layers. By varying the relative InN-GaN fraction in the InGaN quantum wells, the light emission can be varied from violet to amber. AlGaN aluminium gallium nitride of varying AlN fraction can be used to manufacture the cladding and quantum well layers for ultraviolet LEDs, but these devices have not yet reached the level of efficiency and technological maturity of the InGaN-GaN blue/green devices. If the active quantum well layers are GaN, as opposed to alloyed InGaN or AlGaN, the device will emit near-ultraviolet light with wavelengths around 350–370 nm. Green LEDs manufactured from the InGaN-GaN system are far more efficient and brighter than green LEDs produced with non-nitride material systems.

With nitrides containing aluminium, most often AlGaN and AlGaInN, even shorter wavelengths are achievable. Ultraviolet LEDs in a range of wavelengths are becoming available on the market. Near-UV emitters at wavelengths around 375–395 nm are already cheap and often encountered, for example, as black light lamp replacements for inspection of anti-counterfeiting UV watermarks in some documents and paper currencies. Shorter wavelength diodes, while substantially more expensive, are commercially available for wavelengths down to 247 nm.[22] As the photosensitivity of microorganisms approximately matches the absorption spectrum of DNA, with a peak at about 260 nm, UV LEDs emitting at 250–270 nm are to be expected in prospective disinfection and sterilization devices. Recent research has shown that commercially available UVA LEDs (365 nm) are already effective disinfection and sterilization devices.[4]

Wavelengths down to 210 nm were obtained in laboratories using aluminium nitride.

While not an LED as such, an ordinary NPN bipolar transistor will emit violet light if its emitter-base junction is subjected to non-destructive reverse breakdown. This is easy to demonstrate by filing the top off a metal-can transistor (BC107, 2N2222 or similar) and biasing it well above emitter-base breakdown (≥ 20 V) via a current-limiting resistor.




[edit] White light LEDs
There are two ways of producing high intensity white-light using LEDs. One is to use individual LEDs that emit three primary colors[23] – red, green, and blue, and then mix all the colors to produce white light. The other is to use a phosphor material to convert monochromatic light from a blue or UV LED to broad-spectrum white light.


[edit] RGB Systems

Combined spectral curves for blue, yellow-green, and high brightness red solid-state semiconductor LEDs. FWHM spectral bandwidth is approximately 24–27 nm for all three colors.White light can be produced by mixing differently colored light, the most common method is to use red, green and blue (RGB). Hence the method is called multi-colored white LEDs (sometimes referred to as RGB LEDs). Because its mechanism is involved with sophisticated electro-optical design to control the blending and diffusion of different colors, this approach has rarely been used to mass produce white LEDs in the industry. Nevertheless this method is particularly interesting to many researchers and scientists because of the flexibility of mixing different colors. In principle, this mechanism also has higher quantum efficiency in producing white light.

There are several types of multi-colored white LEDs: di-, tri-, and tetrachromatic white LEDs. Several key factors that play among these different approaches include color stability, color rendering capability, and luminous efficacy. Often higher efficacy will mean lower color rendering, presenting a trade off between the luminous efficiency and color rendering. For example, the dichromatic white LEDs have the best luminous efficiency (120 lm/W), but the lowest color rendering capability. Oppositely although tetrachromatic white LEDs have excellent color rendering capability, they often have poor luminous efficiency. Trichromatic white LEDs are in between, having both good luminous efficiency (>70 lm/W) and fair color rendering capability.

What multi-color LEDs offer is not merely another solution of producing white light, but is a whole new technique of producing light of different colors. In principle, all perceivable colors can be produced by mixing different amounts of three primary colors, and this makes it possible to produce precise dynamic color control as well. As more effort is devoted to investigating this technique, multi-color LEDs should have profound influence on the fundamental method which we use to produce and control light color. However, before this type of LED can truly play a role on the market, several technical problems need to be solved. These certainly include that this type of LED's emission power decays exponentially with increasing temperature,[24] resulting in a substantial change in color stability. Such problem is not acceptable for industrial usage. Therefore, many new package designs aiming to solve this problem have been proposed, and their results are being reproduced by researchers and scientists.


[edit] Phosphor based LEDs

Spectrum of a “white” LED clearly showing blue light which is directly emitted by the GaN-based LED (peak at about 465 nm) and the more broadband Stokes-shifted light emitted by the Ce3+:YAG phosphor which emits at roughly 500–700 nm.This method involves coating a LED of one color (mostly blue LED made of InGaN) with phosphor of different colors to produce white light, the resultant LEDs are called phosphor based white LEDs. A fraction of the blue light undergoes the Stokes shift being transformed from shorter wavelengths to longer. Depending on the color of the original LED, phosphors of different colors can be employed. If several phosphor layers of distinct colors are applied, the emitted spectrum is broadened, effectively increasing the color rendering index (CRI) value of a given LED.

Phosphor based LEDs have a lower efficiency then normal LEDs due to the heat loss from the Stokes shift and also other phosphor-related degradation issues. However, it is still the most popular technique for manufacturing high intensity white LEDs. This is because the design and production of a light source or light fixture is much simpler than for instance for a complex RGB system. The majority of high intensity white LEDs now on the market are manufactured with this method.

The largest issue for the efficacy is the seemingly unavoidable Stokes energy loss. However, much effort is being spent on optimizing these devices to higher light output and higher operation temperatures. The efficiency can for instance be increased by adapting better package design or by using a more suitable type of phosphor. Philips Lumileds patented conformal coating process addresses for instance the issue of varying phosphor thickness, giving the white LEDs a more homogeneous white light. With development ongoing the efficacy is generally increased with every new product announcement.

Technically the phosphor based white LEDs encapsulate InGaN blue LEDs inside of a phosphor coated epoxy. A common yellow phosphor material is cerium-doped yttrium aluminum garnet (Ce3+:YAG).

White LEDs can also be made by coating near ultraviolet (NUV) emitting LEDs with a mixture of high efficiency europium-based red and blue emitting phosphors plus green emitting copper and aluminum doped zinc sulfide (ZnS:Cu, Al). This is a method analogous to the way fluorescent lamps work. However, the ultraviolet light causes photodegradation to the epoxy resin and many other materials used in LED packaging, causing manufacturing challenges and shorter lifetimes. This method is less efficient than the blue LED with YAG:Ce phosphor, as the Stokes shift is larger and more energy is therefore converted to heat, but yields light with better spectral characteristics, which render color better. Due to the higher radiative output of the ultraviolet LEDs than of the blue ones, both approaches offer comparable brightness. Another concern is that UV light may leak from a malfunctioning light source and cause harm to human eyes or skin.

The newest method used to produce white light LEDs uses no phosphors at all and is based on homoepitaxially grown zinc selenide (ZnSe) on a ZnSe substrate which simultaneously emits blue light from its active region and yellow light from the substrate.[citation needed]


[edit] Efficiency and operational parameters
Typical indicator LEDs are designed to operate with no more than 30–60 milliwatts (mW) of electrical power. Around 1999, Philips Lumileds introduced power LEDs capable of continuous use at one watt (W). These LEDs used much larger semiconductor die sizes to handle the large power inputs. Also, the semiconductor dies were mounted onto metal slugs to allow for heat removal from the LED die.

One of the key advantages of LED-based lighting is its high efficiency, as measured by its light output per unit power input. White LEDs quickly matched and overtook the efficiency of standard incandescent lighting systems. In 2002, Lumileds made five-watt LEDs available with a luminous efficacy of 18–22 lumens per watt (lm/W). For comparison, a conventional 60–100 W incandescent lightbulb produces around 15 lm/W, and standard fluorescent lights produce up to 100 lm/W. (The luminous efficacy article discusses these comparisons in more detail.)

In September 2003, a new type of blue LED was demonstrated by the company Cree, Inc. to provide 24 mW at 20 milliamperes (mA). This produced a commercially packaged white light giving 65 lm/W at 20 mA, becoming the brightest white LED commercially available at the time, and more than four times as efficient as standard incandescents. In 2006 they demonstrated a prototype with a record white LED luminous efficacy of 131 lm/W at 20 mA. Also, Seoul Semiconductor has plans for 135 lm/W by 2007 and 145 lm/W by 2008, which would be approaching an order of magnitude improvement over standard incandescents and better even than standard fluorescents.[25] Nichia Corporation has developed a white light LED with luminous efficacy of 150 lm/W at a forward current of 20 mA.[26]

It should be noted that high-power (≥ 1 W) LEDs are necessary for practical general lighting applications. Typical operating currents for these devices begin at 350 mA. The highest efficiency high-power white LED is claimed by Philips Lumileds Lighting Co. with a luminous efficacy of 115 lm/W (350 mA).


[edit] Failure modes
The most common way for LEDs (and diode lasers) to fail is the gradual lowering of light output and loss of efficiency. However, sudden failures can occur as well.

The mechanism of degradation of the active region, where the radiative recombination occurs, involves nucleation and growth of dislocations; this requires a presence of an existing defect in the crystal and is accelerated by heat, high current density, and emitted light. Gallium arsenide and aluminium gallium arsenide are more susceptible to this mechanism than gallium arsenide phosphide and indium phosphide. Due to different properties of the active regions, gallium nitride and indium gallium nitride are virtually insensitive to this kind of defect; however, high current density can cause electromigration of atoms out of the active regions, leading to emergence of dislocations and point defects, acting as nonradiative recombination centers and producing heat instead of light. Ionizing radiation can lead to the creation of such defects as well, which leads to issues with radiation hardening of circuits containing LEDs (e.g., in optoisolators). Early red LEDs were notable for their short lifetime.

White LEDs often use one or more phosphors. The phosphors tend to degrade with heat and age, losing efficiency and causing changes in the produced light color. Pink LEDs often use an organic phosphor formulation which may degrade after just a few hours of operation causing a major shift in output color.

High electrical currents or voltages at elevated temperatures can cause diffusion of metal atoms from the electrodes into the active region. Some materials, notably indium tin oxide and silver, are subject to electromigration with the conseguence of leakage current and non radiative recombination along the chip edges. In some cases, especially with GaN/InGaN diodes, a barrier metal layer is used to hinder the electromigration effects. Mechanical stresses, high currents, and corrosive environment can lead to formation of whiskers, causing short circuits.

High-power LEDs are susceptible to current crowding, nonhomogenous distribution of the current density over the junction. This may lead to creation of localized hot spots, which poses risk of thermal runaway. Nonhomogenities in the substrate, causing localized loss of thermal conductivity, aggravate the situation; most common ones are voids caused by incomplete soldering, or by electromigration effects and Kirkendall voiding. Thermal runaway is a common cause of LED failures.

Laser diodes may be subject to catastrophic optical damage, when the light output exceeds a critical level and causes melting of the facet.

Some materials of the plastic package tend to yellow when subjected to heat, causing partial absorption (and therefore loss of efficiency) of the affected wavelengths.

Sudden failures are most often caused by thermal stresses. When the epoxy resin used in packaging reaches its glass transition temperature, it starts rapidly expanding, causing mechanical stresses on the semiconductor and the bonded contact, weakening it or even tearing it off. Conversely, very low temperatures can cause cracking of the packaging.

Electrostatic discharge (ESD) may cause immediate failure of the semiconductor junction, a permanent shift of its parameters, or latent damage causing increased rate of degradation. LEDs and lasers grown on sapphire substrate are more susceptible to ESD damage



Three-phase electric power is a common method of electric power transmission.[1] It is a type of polyphase system mainly used to power motors and many other devices. A three-phase system uses less conductor material to transmit electric power than equivalent single-phase, two-phase, or direct-current systems at the same voltage.

In a three-phase system, three circuit conductors carry three alternating currents (of the same frequency) which reach their instantaneous peak values at different times. Taking one conductor as the reference, the other two currents are delayed in time by one-third and two-thirds of one cycle of the electrical current. This delay between "phases" has the effect of giving constant power transfer over each cycle of the current, and also makes it possible to produce a rotating magnetic field in an electric motor.

Three phase systems may or may not have a neutral wire. A neutral wire allows the three phase system to use a higher voltage while still supporting lower voltage single phase appliances. In high voltage distribution situations it is common not to have a neutral wire as the loads can simply be connected between phases (phase-phase connection).

Three phase has properties that make it very desirable in electric power systems. First, the phase currents tend to cancel out one another, summing to zero in the case of a linear balanced load. This makes it possible to eliminate the neutral conductor on some lines; all the phase conductors carry the same current and so can be the same size, for a balanced load. Second, power transfer into a linear balanced load is constant, which helps to reduce generator and motor vibrations. Finally, three-phase systems can produce a magnetic field that rotates in a specified direction, which simplifies the design of electric motors. Three is the lowest phase order to exhibit all of these properties.

Most domestic loads are single phase. In North America and some other countries, three phase power generally does not enter domestic houses at all. Even in areas where it does, it is typically split out at the main distribution board.

Generation and distribution

Animation of three-phase current flow
Elementary six-wire three-phase alternator, with each phase using a separate pair of transmission wires.
Elementary three-wire three-phase alternator, showing how the phases can share only three transmission wires.At the power station, an electrical generator converts mechanical power into a set of alternating electric currents, one from each electromagnetic coil or winding of the generator. The currents are sinusoidal functions of time, all at the same frequency but offset in time to give different phases. In a three-phase system the phases are spaced equally, giving a phase separation of one-third cycle. The power frequency is typically 50 Hz in Asia, Europe, South America (except Brazil,Colombia and Dominican Republic) and Australia, and 60 Hz in the US, Canada, Brazil ,Colombia and Dominican Republic (but see Mains power systems for more detail).

Generators output at a voltage that ranges from hundreds of volts to 30,000 volts. At the power station, transformers "step-up" this voltage to one more suitable for transmission.

After numerous further conversions in the transmission and distribution network the power is finally transformed to the standard mains voltage (i.e. the "household" voltage). The power may already have been split into single phase at this point or it may still be three phase. Where the stepdown is 3 phase, the output of this transformer is usually star connected with the standard mains voltage (120 V in North America and 230 V in Europe and Australia) being the phase-neutral voltage. Another system commonly seen in North America is to have a delta connected secondary with a centre tap on one of the windings supplying the ground and neutral. This allows for 240 V three phase as well as three different single phase voltages (120 V between two of the phases and the neutral, 208 V between the third phase (known as a high leg) and neutral and 240 V between any two phases) to be made available from the same supply.


[edit] Single-phase loads
Single-phase loads may be connected to a three-phase system, either by connecting across two live conductors (a phase-to-phase connection), or by connecting between a phase conductor and the system neutral, which is either connected to the center of the Y (star) secondary winding of the supply transformer, or is connected to the center of one winding of a delta transformer (Highleg Delta system) (see transformer and Split phase ). Single-phase loads should be distributed evenly between the phases of the three-phase system for efficient use of the supply transformer and supply conductors.

The neutral point of a three phase system exists at the mathematical center of an equilateral triangle formed by the phase points, and the line-to-line voltage of a three-phase system is correspondingly times the line to neutral voltage. Where the line-to-neutral voltage is a standard utilization voltage, (for example in a 240 V/415 V system) individual single-phase utility customers or loads may each be connected to a different phase of the supply. Where the line-to-neutral voltage is not a common utilization voltage, for example in a 347/600 V system, single-phase loads must be supplied by individual step-down transformers. In multiple-unit residential buildings in North America, lighting and convenience outlets can be connected line-to-neutral to give the 120 V distribution voltage (115V utilization voltage), and high-power loads such as cooking equipment, space heating, water heaters, or air conditioning can be connected across two phases to give 208 V. This practice is common enough that 208 V single-phase equipment is readily available in North America. Attempts to use the more common 120/240 V equipment intended for three-wire single-phase distribution may result in poor performance since 240 V heating equipment will only produce 75% of its rating when operated at 208 V.

Where three phase at low voltage is otherwise in use, it may still be split out into single phase service cables through joints in the supply network or it may be delivered to a master distribution board (breaker panel) at the customer's premises. Connecting an electrical circuit from one phase to the neutral generally supplies the country's standard single phase voltage (120 VAC or 230 VAC) to the circuit.

The power transmission grid is organized so that each phase carries the same magnitude of current out of the major parts of the transmission system. The currents returning from the customers' premises to the last supply transformer all share the neutral wire, but the three-phase system ensures that the sum of the returning currents is approximately zero. The primary side of that supply transformer commonly uses a delta winding, and no neutral is needed in the high voltage side of the network. Any unbalanced phase loading on the secondary side of the transformer will use the transformer capacity inefficiently, but equal current will be drawn from the phases feeding the primary delta winding, leaving the high voltage network unaffected.

If the supply neutral of a three-phase system with line-to-neutral connected loads is broken, generally the voltage balance on the loads will no longer be maintained. The now-virtual neutral point will tend to drift toward the most heavily loaded phase, causing undervoltage conditions on that phase only. Correspondingly, the lightly-loaded phases may approach the line-to-line voltage, which exceeds the line-to-neutral voltage by a factor of √3, causing overheating and failure of many types of loads. For example, if several houses are connected to a common three-phase transformer, each house might be connected to one of the three phases. If the neutral connection is broken at the transformer or on the distribution line somewhere upstream of the transformer, all equipment in a house might be damaged due to overvoltage. This type of failure event can be difficult to troubleshoot if the drifting neutral effect is not understood. With inductive and/or capacitive loads, all phases can suffer damage as the reactive current moves across abnormal paths in the unbalanced system, especially if resonance conditions occur. For this reason, neutral connections are a critical part of a power distribution network and must be made as reliable as any of the phase connections.


[edit] Three-phase loads

The rotating magnetic field of a three-phase motor.The most important class of three-phase load is the electric motor. A three phase induction motor has a simple design, inherently high starting torque, and high efficiency. Such motors are applied in industry for pumps, fans, blowers, compressors, conveyor drives, and many other kinds of motor-driven equipment. A three-phase motor will be more compact and less costly than a single-phase motor of the same voltage class and rating; and single-phase AC motors above 10 HP (7.5 kW) are uncommon. Three phase motors will also vibrate less and hence last longer than single phase motor of the same power used under the same conditions.

Large air conditioning, etc. equipment use three-phase motors for reasons of efficiency, economy and longevity.

Resistance heating loads such as electric boilers or space heating may be connected to three-phase systems. Electric lighting may also be similarly connected. These types of loads do not require the revolving magnetic field characteristic of three-phase motors but take advantage of the higher voltage and power level usually associated with three-phase distribution. Fluorescent lighting systems also benefit from reduced flicker if adjacent fixtures are powered from different phases.

Large rectifier systems may have three-phase inputs; the resulting DC current is easier to filter (smooth) than the output of a single-phase rectifier. Such rectifiers may be used for battery charging, electrolysis processes such as aluminum production, or for operation of DC motors.

An interesting example of a three-phase load is the electric arc furnace used in steelmaking and in refining of ores.

In much of Europe stoves are designed for a three phase feed. Usually the individual heating units are connected between phase and neutral to allow for connection to a single phase supply. In many areas of Europe, single phase power is the only source available.


[edit] Phase converters
Occasionally the advantages of three-phase motors make it worthwhile to convert single-phase power to three phase. Small customers, such as residential or farm properties may not have access to a three-phase supply, or may not want to pay for the extra cost of a three-phase service, but may still wish to use three-phase equipment. Such converters may also allow the frequency to be varied allowing speed control. Some locomotives are moving to multi-phase motors driven by such systems even though the incoming supply to a locomotive is nearly always either DC or single phase AC.

Because single-phase power goes to zero at each moment that the voltage crosses zero but three-phase delivers power continuously, any such converter must have a way to store energy for the necessary fraction of a second.

One method for using three-phase equipment on a single-phase supply is with a rotary phase converter, essentially a three-phase motor with special starting arrangements and power factor correction that produces balanced three-phase voltages. When properly designed these rotary converters can allow satisfactory operation of three-phase equipment such as machine tools on a single phase supply. In such a device, the energy storage is performed by the mechanical inertia (flywheel effect) of the rotating components. An external flywheel is sometimes found on one or both ends of the shaft.

A second method that was popular in the 1940s and 50s was a method that was called the transformer method. In that time period capacitors were more expensive relative to transformers. So an autotransformer was used to apply more power through fewer capacitors. This method performs well and does have supporters, even today. The usage of the name transformer method separated it from another common method, the static converter, as both methods have no moving parts, which separates them from the rotary converters.

Another method often attempted is with a device referred to as a static phase converter. This method of running three phase equipment is commonly attempted with motor loads though it only supplies ⅔ power and can cause the motor loads to run hot and in some cases overheat. This method will not work when sensitive circuitry is involved such as CNC devices, or in induction and rectifier type loads.

Some devices are made which create an imitation three-phase from three-wire single phase supplies. This is done by creating a third "subphase" between the two live conductors, resulting in a phase separation of 180° − 90° = 90°. Many three-phase devices will run on this configuration, but at lower efficiency.

Variable-frequency drives (also known as solid-state inverters) are used to provide precise speed and torque control of three phase motors. Some models can be powered by a single phase supply. VFDs work by converting the supply voltage to DC and then converting the DC to a suitable three phase source for the motor.

Digital phase converters are similar to variable frequency drives but are designed for fixed frequency operation from a single-phase source. Similar to a variable frequency drive, they use a microprocessor to control solid state power switching components to maintain balanced three-phase voltages.


[edit] Alternatives to three-phase
Three-wire single-phase distribution is used when three phase power is not available, and allows double the normal utilization voltage to be supplied for high-power loads.
Two-phase electric power, like three phase, gives constant power transfer to a linear load. For loads which connect each phase to neutral, assuming the load is the same power draw, the two wire system has a neutral current which is greater than neutral current in a three phase system. Also motors aren't entirely linear, which means that despite the theory, motors running on three phase tend to run smoother than those on two phase. The generators at Niagara Falls installed in 1895 were the largest generators in the world at the time and were two-phase machines. True two-phase power distribution is essentially obsolete. Special purpose systems may use a two-phase system for control. Two-phase power may be obtained from a three-phase system using an arrangement of transformers called a Scott-T transformer.
Monocyclic power was a name for an asymmetrical modified two-phase power system used by General Electric around 1897, championed by Charles Proteus Steinmetz and Elihu Thomson. This system was devised to avoid patent infringement. In this system, a generator was wound with a full-voltage single phase winding intended for lighting loads, and with a small (usually ¼ of the line voltage) winding which produced a voltage in quadrature with the main windings. The intention was to use this "power wire" additional winding to provide starting torque for induction motors, with the main winding providing power for lighting loads. After the expiration of the Westinghouse patents on symmetrical two-phase and three-phase power distribution systems, the monocyclic system fell out of use; it was difficult to analyze and did not last long enough for satisfactory energy metering to be developed.
High phase order systems for power transmission have been built and tested. Such transmission lines use 6 or 12 phases and design practices characteristic of extra-high voltage transmission lines. High-phase order transmission lines may allow transfer of more power through a given transmission line right-of-way without the expense of a HVDC converter at each end of the line.

[edit] Color codes
Conductors of a three phase system are usually identified by a color code, to allow for balanced loading and to assure the correct phase rotation for induction motors. Colors used may adhere to International Standard IEC 60446, older standards, or to no standard at all, and may vary even within a single installation. For example, in the U.S. and Canada, different color codes are used for grounded (earthed) and un-grounded systems.

L1 L2 L3 Neutral Ground /
Protective Earth
United States
(common practice1) Black Red Blue White or Gray Green, Green/yellow striped or a bare copper wire
United States
(alternative practice2) Brown Orange Yellow Gray or White Green
Canada (mandatory)[2] Black Red Blue White Green (or bare copper)
Canada (isolated three-phase installations)[3] Orange Brown Yellow White Green
Europe and many other countries, including UK from April 2004 (IEC 60446), Hong Kong from July 2007 Brown Black Grey Blue Green/yellow striped4
Older European (IEC 60446, varies by country6) Black or brown Black or brown Black or brown Blue Green/yellow striped5
UK until April 2006, Hong Kong until April 2009, South Africa, Malaysia Red Yellow Blue Black Green/yellow striped (green on installations approx. before 1970)
Pakistan Red Yellow Blue Black Green
India Red Yellow Blue Black Green
Australia and New Zealand (per AS/NZS 3000:2000 Section 3.8.1) Red3 White3 (prev. yellow) Blue3 Black Green/yellow striped (green on very old installations)
People's Republic of China (per GB 50303-2002 Section 15.2.2) Yellow Green Red Light Blue Green/yellow striped
A dynamo, originally another name for an electrical generator, now means a generator that produces direct current with the use of a commutator. Dynamos were the first electrical generators capable of delivering power for industry, and the foundation upon which many other later electric-power conversion devices were based, including the electric motor, the alternating-current alternator, and the rotary converter. They are rarely used for power generation now because of the dominance of alternating current, the disadvantages of the commutator, and the ease of converting alternating to direct current using solid state methods.

The word still has some regional usage as a replacement for the word generator. In the UK British-English dialect, a small electrical generator built into the hub of a bicycle wheel to power lights is called a Hub dynamo.

Description
The dynamo uses rotating coils of wire and magnetic fields to convert mechanical rotation into a pulsing direct electric current through Faraday's law. A dynamo machine consists of a stationary structure, called the stator, which provides a constant magnetic field, and a set of rotating windings called the armature which turn within that field. On small machines the constant magnetic field may be provided by one or more permanent magnets; larger machines have the constant magnetic field provided by one or more electromagnets, which are usually called field coils.

The commutator was needed to produce direct current. When a loop of wire rotates in a magnetic field, the potential induced in it reverses with each half turn, generating an alternating current. However, in the early days of electric experimentation, alternating current generally had no known use. The few uses for electricity, such as electroplating, used direct current provided by messy liquid batteries. Dynamos were invented as a replacement for batteries. The commutator is a set of contacts mounted on the machine's shaft, which reverses the connection of the windings to the external circuit when the potential reverses, so instead of alternating current, a pulsing direct current is produced.


Pixii's dynamo. The commutator is located on the shaft below the spinning magnet.
[edit] Historical milestones
The first direct current generator was invented by Michael Faraday in 1831, a copper disk that rotated between the poles of a magnet. However, the single current path in Faraday's disk generated very low voltage. Faraday and others found that higher, more useful voltages could be produced by winding multiple turns of wire into a coil. As dynamos began to be used in industry, it was found to be more economical to transport electricity at higher voltages. Since power is equal to the voltage times the current, higher voltages required less current, allowing the use of narrower, less expensive conductors. Wire windings can conveniently produce any voltage desired by changing the number of turns, so they have been used in all dynamos.


[edit] Pixii's dynamo
The first dynamo based on Faraday's principles was built in 1832 by Hippolyte Pixii, a French instrument maker. It used a permanent magnet which was rotated by a crank. The spinning magnet was positioned so that its north and south poles passed by a piece of iron wrapped with wire. Pixii found that the spinning magnet produced a pulse of current in the wire each time a pole passed the coil. However, the north and south poles of the magnet induced currents in opposite directions. To convert the alternating current to DC, Pixii invented a commutator, a split metal cylinder on the shaft, with two springy metal contacts that pressed against it.


[edit] Jedlik's dynamo

Ányos Jedlik's single pole electric starter (dynamo) (1861)Main article: Jedlik's dynamo
In 1827, Hungarian Anyos Jedlik started experimenting with electromagnetic rotating devices which he called electromagnetic self-rotors. In the prototype of the single-pole electric starter (finished between 1852 and 1854) both the stationary and the revolving parts were electromagnetic. He formulated the concept of the dynamo at least 6 years before Siemens and Wheatstone. In essence the concept is that instead of permanent magnets, two electromagnets opposite to each other induce the magnetic field around the rotor.


Pacinotti dynamo, 1860












[edit] Gramme ring dynamo

Small Gramme dynamo, around 1878
How Gramme dynamo works to produce a smooth output waveform.Main article: Gramme dynamo
Both of these designs suffered from a similar problem: the electric current they produced consisted of "spikes" of current followed by none at all. Antonio Pacinotti, an Italian scientist, solved this problem around 1860 by replacing the spinning two-pole axial coil with a multi-pole toroidal one, which he created by wrapping an iron ring with a continuous winding, connected to the commutator at many equally spaced points around the ring; the comutator being divided into many segments. This meant that some part of the coil was continually passing by the magnets, smoothing out the current.

Zénobe Gramme reinvented this design in 1871 when designing the first commercial power plants, which operated in Paris in the 1870s. Another advantage of Gramme's design was a better path for the magnetic flux, by filling the space occupied by the magnetic field with heavy iron cores and minimizing the air gaps between the stationary and rotating parts. The Gramme dynamo was the first machine to generate commercial quantities of power for industry. Further improvements were made on the Gramme ring, but the basic concept of a spinning endless loop of wire remains at the heart of all modern dynamos.


[edit] Discovery of electric motor principles
While not originally designed for the purpose, it was discovered that a dynamo can act as an electric motor when supplied with direct current from a battery or another dynamo. At an industrial exhibition in Vienna in 1873, Gramme noticed that the shaft of his dynamo began to spin when its terminals were accidently connected to another dynamo producing electricity. Although this wasn't the first demonstration of an electric motor, it was the first practical one. It was found that the same design features which make a dynamo efficient also make a motor efficient. The efficient Gramme design, with small magnetic air gaps and many coils of wire attached to a many-segmented commutator, also became the basis for the design of all practical DC motors.

Large dynamos producing direct current were problematic in situations where two or more dynamos are working together and one has an engine running at a lower power than the other. The dynamo with the stronger engine will tend to drive the weaker as if it were a motor, against the rotation of the weaker engine. Such reverse-driving could feed back into the driving engine of a dynamo and cause a dangerous out of control reverse-spinning condition in the lower-power dynamo. It was eventually determined that when several dynamos all feed the same power source all the dynamos must be locked into synchrony using a jackshaft interconnecting all engines and rotors to counter these imbalances.


[edit] Dynamo as Commutated DC Generator
After the discovery of the AC Generator and that alternating current can in fact be useful for something, the word dynamo became associated exclusively with the commutated DC electric generator, while an AC electrical generator using either slip rings or rotor magnets would become known as an alternator.

An AC electric motor using either slip rings or rotor magnets was referred to as a synchronous motor, and a commutated DC electric motor could be called either an electric motor though with the understanding that it could in priciple operate as a generator.


[edit] Rotary Converter Development
After dynamos were found to allow easy conversion back and forth between mechanical or electrical power, the new discovery was used to develop complex multi-field single-rotor devices with two or more commutators. These were known as a rotary converters. These devices were usually not burdened by mechanical loads, but watched just spinning on their own.

The rotary converter can directly convert, internally, any power source into any other. This includes direct current (DC) into alternating current (AC), 25 cycle AC into 60 cycle AC, or many different output currents at the same time. The size and mass of these was very large so that the rotor would act as a flywheel to help smooth out any sudden surges or dropouts.

The technology of rotary converters ruled until the development of vacuum tubes allowed for electronic oscillators. This eliminated the need for physically spinning rotors and commutators.


In electricity generation, an electrical generator is a device that converts mechanical energy to electrical energy, generally using electromagnetic induction. The reverse conversion of electrical energy into mechanical energy is done by a motor, and motors and generators have many similarities. A generator forces electric charges to move through an external electrical circuit, but it does not create electricity or charge, which is already present in the wire of its windings. It is somewhat analogous to a water pump, which creates a flow of water but does not create the water inside. The source of mechanical energy may be a reciprocating or turbine steam engine, water falling through a turbine or waterwheel, an internal combustion engine, a wind turbine, a hand crank, the sun or solar energy, compressed air or any other source of mechanical energy.

Dynamo
Main article Dynamo


Dynamos are no longer used for power generation due to the size and complexity of the commutator needed for high power applications. This large belt-driven high-current dynamo produced 310 amperes at 7 volts, or 2,170 watts, when spinning at 1400 RPM.
Dynamo Electric Machine [End View, Partly Section] (U.S. Patent 284,110 )The Dynamo was the first electrical generator capable of delivering power for industry. The dynamo uses electromagnetic principles to convert mechanical rotation into a pulsing direct electric current through the use of a commutator. The first dynamo was built by Hippolyte Pixii in 1832.

Through a series of accidental discoveries, the dynamo became the source of many later inventions, including the DC electric motor, the AC alternator, the AC synchronous motor, and the rotary converter.

A dynamo machine consists of a stationary structure, which provides a constant magnetic field, and a set of rotating windings which turn within that field. On small machines the constant magnetic field may be provided by one or more permanent magnets; larger machines have the constant magnetic field provided by one or more electromagnets, which are usually called field coils.

Large power generation dynamos are now rarely seen due to the now nearly universal use of alternating current for power distribution and solid state electronic AC to DC power conversion. But before the principles of AC were discovered, very large direct-current dynamos were the only means of power generation and distribution. Now power generation dynamos are mostly a curiosity.


[edit] Other Rotating Electromagnetic Generators
Without a commutator, the dynamo is an example of an alternator, which is a synchronous singly-fed generator. With an electromechanical commutator, the dynamo is a classical direct current (DC) generator. The alternator must always operate at a constant speed that is precisely synchronized to the electrical frequency of the power grid for non-destructive operation. The DC generator can operate at any speed within mechanical limits but always outputs a direct current waveform.

Other types of generators, such as the asynchronous or induction singly-fed generator, the doubly-fed generator, or the brushless wound-rotor doubly-fed generator, do not incorporate permanent magnets or field windings (i.e, electromagnets) that establish a constant magnetic field, and as a result, are seeing success in variable speed constant frequency applications, such as wind turbines or other renewable energy technologies.

The full output performance of any generator can be optimized with electronic control but only the doubly-fed generators or the brushless wound-rotor doubly-fed generator incorporate electronic control with power ratings that are substantially less than the power output of the generator under control, which by itself offer cost, reliability and efficiency benefits.


[edit] MHD generator
A magnetohydrodynamic generator directly extracts electric power from moving hot gases through a magnetic field, without the use of rotating electromagnetic machinery. MHD generators were originally developed because the output of a plasma MHD generator is a flame, well able to heat the boilers of a steam power plant. The first practical design was the AVCO Mk. 25, developed in 1965. The U.S. government funded substantial development, culminating in a 25Mw demonstration plant in 1987. In the Soviet Union from 1972 until the late 1980's, the MHD plant U 25 was in regular commercial operation on the Moscow power system with a rating of 25 MW, the largest MHD plant rating in the world at that time. [1] MHD generators operated as a topping cycle are currently (2007) less efficient than combined-cycle gas turbines.


[edit] Terminology
The two main parts of a generator or motor can be described in either mechanical or electrical terms:

Mechanical:

Rotor: The rotating part of an alternator, generator, dynamo or motor.
Stator: The stationary part of an alternator, generator, dynamo or motor.
Electrical:

Armature: The power-producing component of an alternator, generator, dynamo or motor. In a generator, alternator, or dynamo the armature windings generate the electrical current. The armature can be on either the rotor or the stator.
Field: The magnetic field component of an alternator, generator, dynamo or motor. The magnetic field of the dynamo or alternator can be provided by either electromagnets or permanent magnets mounted on either the rotor or the stator. (For a more technical discussion, refer to the Field coil article.)
Because power transferred into the field circuit is much less than in the armature circuit, AC generators nearly always have the field winding on the rotor and the stator as the armature winding. Only a small amount of field current must be transferred to the moving rotor, using slip rings. Direct current machines necessarily have the commutator on the rotating shaft, so the armature winding is on the rotor of the machine.


[edit] Excitation

A small early 1900s 75 KVA direct-driven power station AC alternator, with a separate belt-driven exciter generator.Main article Excitation (magnetic)

An electric generator or electric motor that uses field coils rather than permanent magnets will require a current flow to be present in the field coils for the device to be able to work. If the field coils are not powered, the rotor in a generator can spin without producing any usable electrical energy, while the rotor of a motor may not spin at all. Very large power station generators often utilize a separate smaller generator to excite the field coils of the larger.

In the event of a severe widespread power outage where islanding of power stations has occurred, the stations may need to perform a black start to excite the fields of their largest generators, in order to restore customer power service.

An electric meter or energy meter is a device that measures the amount of electrical energy supplied to or produced by a residence, business or machine.

The most common type is more properly known as a kilowatt hour meter or a joule meter. When used in electricity retailing, the utilities record the values measured by these meters to generate an invoice for the electricity. They may also record other variables including the time when the electricity was used.


Unit of measurement

Panel-mounted solid state electricity meter, connected to a 2MVA electricity substation. Remote current and voltage sensors can be read and programmed remotely by modem and locally by infra-red. The circle with two dots is the infra-red port. Tamper-evident seals can be seen.The most common unit of measurement on the electricity meter is the kilowatt hour, which is equal to the amount of energy used by a load of one kilowatt over a period of one hour, or 3,600,000 joules. Some electricity companies use the SI megajoule instead.

Demand is normally measured in watts, but averaged over a period, most often a quarter or half hour.

Reactive power is measured in "Volt-amperes reactive", (VARh) in kilovar-hours. A "lagging" or inductive load, such as a motor, will have negative reactive power. A "leading", or capacitive load, will have positive reactive power.

Volt-amperes measures all power passed through a distribution network, including reactive and actual. This is equal to the product of root-mean-square volts and amperes.

Distortion of the electric current by loads is measured in several ways. Power factor is the ratio of resistive (or real power) to volt-amperes. A capacitive load has a leading power factor, and an inductive load has a lagging power factor. A purely resistive load (such as a fillament lamp, heater or kettle) exhibits a power factor of 1. Current harmonics are a measure of distortion of the wave form. For example, electronic loads such as computer power supplies draw their current at the voltage peak to fill their internal storage elements. This can lead to a significant voltage drop near the supply voltage peak which shows as a flattening of the voltage waveform. This flattening causes odd harmonics which are not permissible if they exceed specific limits, as they are not only wasteful, but may interfere with the operation of other equipment. Harmonic emissions are mandated by law in EU and other countries to fall within specified limits.

Other units of measurement
In addition to metering based on the amount of energy used, other types of metering are available.

Meters which measured the amount of charge (coulombs) used, known as ampere-hour meters, were used in the early days of electrification. These were dependent upon the supply voltage remaining constant for accurate measurement of energy usage, which was not a likely circumstance with most supplies.

Some meters measured only the length of time for which current flowed, with no measurement of the magnitude of voltage or current being made. These were only suited for constant load applications.

Neither type is likely to be used today.


[edit] Types of meter

Mechanism of electromechanical induction meter. (1) - Voltage coil - many turns of fine wire encased in plastic, connected in parallel with load. (2) - Current coil - three turns of thick wire, connected in series with load. (3) - Stator - concentrates and confines magnetic field. (4) - Aluminium rotor disc. (5) - rotor brake magnets. (6) - spindle with worm gear. (7) - display dials - note that the 1/10, 10 and 1000 dials rotate clockwise while the 1, 100 and 10000 dials rotate counter-clockwise.
This mechanical electricity meter has every other dial rotating counter-clockwise.
Three-phase electromechanical induction meter, metering 100 A 230/400 V supply. Horizontal aluminium rotor disc is visible in centre of meter.Modern electricity meters operate by continuously measuring the instantaneous voltage (volts) and current (amperes) and finding the product of these to give instantaneous electrical power (watts) which is then integrated against time to give energy used (joules, kilowatt-hours etc). The meters fall into two basic categories, electromechanical and electronic.


[edit] Electromechanical meters
The most common type of electricity meter is the Thomson or electromechanical induction watt-hour meter, invented by Elihu Thomson in 1888.[1][2]

Technology
The electromechanical induction meter operates by counting the revolutions of an aluminium disc which is made to rotate at a speed proportional to the power. The number of revolutions is thus proportional to the energy usage. It consumes a small amount of power, typically around 2 watts.

The metallic disc is acted upon by two coils. One coil is connected in such a way that it produces a magnetic flux in proportion to the voltage and the other produces a magnetic flux in proportion to the current. The field of the voltage coil is delayed by 90 degrees using a lag coil. [1]This produces eddy currents in the disc and the effect is such that a force is exerted on the disc in proportion to the product of the instantaneous current and voltage. A permanent magnet exerts an opposing force proportional to the speed of rotation of the disc - this acts as a brake which causes the disc to stop spinning when power stops being drawn rather than allowing it to spin faster and faster. This causes the disc to rotate at a speed proportional to the power being used.

The type of meter described above is used on a single-phase AC supply. Different phase configurations use additional voltage and current coils.

Reading
The aluminium disc is supported by a spindle which has a worm gear which drives the register. The register is a series of dials which record the amount of energy used. The dials may be of the cyclometer type, an odometer-like display that is easy to read where for each dial a single digit is shown through a window in the face of the meter, or of the pointer type where a pointer indicates each digit. It should be noted that with the dial pointer type, adjacent pointers generally rotate in opposite directions due to the gearing mechanism.

The amount of energy represented by one revolution of the disc is denoted by the symbol Kh which is given in units of watt-hours per revolution. The value 7.2 is commonly seen. Using the value of Kh, one can determine their power consumption at any given time by timing the disc with a stopwatch. If the time in seconds taken by the disc to complete one revolution is t, then the power in watts is . For example, if Kh = 7.2, as above, and one revolution took place in 14.4 seconds, the power is 1800 watts. This method can be used to determine the power consumption of household devices by switching them on one by one.

Most domestic electricity meters must be read manually, whether by a representative of the power company or by the customer. Where the customer reads the meter, the reading may be supplied to the power company by telephone, post or over the internet. The electricity company will normally require a visit by a company representative at least annually in order to verify customer-supplied readings and to make a basic safety check of the meter.

Accuracy
In an induction type meter, creep is a phenomenon that can adversely affect accuracy, that occurs when the meter disc rotates continuously with potential applied and the load terminals open circuited. A creep test is when the meter is tested for the error due to creep.




[edit] Solid state meters
Some newer electricity meters are solid state and display the power used on an LCD, while newer electronic meters can be read automatically.

In addition to measuring electricity used, solid state meters can also record other parameters of the load and supply such as maximum demand, power factor and reactive power used etc. They can also include electronic clock mechanisms to compute a value, rather than an amount, of electricity consumed, with the pricing varying of by the time of day, day of week, and seasonally.
Types of electricity


There are two types of Electricity, Static Electricity and Current Electricity. Static Electricity is made by rubbing together two or more objects and making friction while Current electricity is the flow of electric charge across an electrical field.

Static Electricity

Static electricity is when electrical charges build up on the surface of a material. It is usually caused by rubbing materials together. The result of a build-up of static electricity is that objects may be attracted to each other or may even cause a spark to jump from one to the other. For Example rub a baloon on a wool and hold it up to the wall.

Before rubbing, like all materials, the balloons and the wool sweater have a neutral charge. This is because they each have an equal number of positively charged subatomic particles (protons) and negatively charged subatomic particles (electrons). When you rub the balloon with the wool sweater, electrons are transferred from the wool to the rubber because of differences in the attraction of the two materials for electrons. The balloon becomes negatively charged because it gains electrons from the wool, and the wool becomes positively charged because it loses electrons.

Current Electricity

Current is the rate of flow of electrons. It is produced by moving electrons and it is measured in amperes. Unlike static electricity, current electricity must flow through a conductor, usually copper wire. Current with electricity is just like current when you think of a river. The river flows from one spot to another, and the speed it moves is the speed of the current. With electricity, current is a measure of the amount of energy transferred over a period of time. That energy is called a flow of electrons. One of the results of current is the heating of the conductor. When an electric stove heats up, it's because of the flow of current.

There are different sources of current electricity including the chemical reactions taking place in a battery. The most common source is the generator. A simple generator produces electricity when a coil of copper turns inside a magnetic field. In a power plant, electromagnets spinning inside many coils of copper wire generate vast quantities of current electricity.

There are two main kinds of electric current. Direct (DC) and Alternating (AC). It's easy to remember. Direct current is like the energy you get from a battery. Alternating current is like the plugs in the wall. The big difference between the two is that DC is a flow of energy while AC can turn on and off. AC reverses the direction of the electrons.

Tuesday, August 5, 2008