Tuesday, July 15, 2008

Electricity generation is the process of converting non-electrical energy to electricity. For electric utilities, it is the first process in the delivery of electricity to consumers. The other processes, electric power transmission and electricity distribution, are normally carried out by the electrical power industry. Electricity is most often generated at a power station by electromechanical generators, primarily driven by heat engines fueled by chemical combustion or nuclear fission but also by other means such as the kinetic energy of flowing water and wind. There are many other technologies that can be and are used to generate electricity such as solar photovoltaics.

Sources of electricity in the U.S. in 2006; fossil fuel generation (mainly coal) was the largest source.
Sources of electricity in the U.S. in 2006;[1] fossil fuel generation (mainly coal) was the largest source.

Contents

[hide]

History

Sources of electricity in France in 2006; nuclear power was the main source.
Sources of electricity in France in 2006;[2] nuclear power was the main source.

Centralized power generation became possible when it was recognized that alternating current power lines can transport electricity at very low costs across great distances by taking advantage of the ability to raise and lower the voltage using power transformers.

Electricity has been generated at central stations since 1881. The first power plants were run on water power or coal,[3] and today we rely mainly on coal, nuclear, natural gas, hydroelectric, and petroleum with a small amount from solar energy, tidal harnesses, wind generators, and

Electricity demand

Large dams such as Three Gorges Dam in China can provide large amounts of hydroelectric power; it will have a 22.5 GW capability.
Large dams such as Three Gorges Dam in China can provide large amounts of hydroelectric power; it will have a 22.5 GW capability.
Coal fired power plants provide 49% of consumed electricity in the United States. Cleaner burning technologies continue to make coal fired power one of the cheapest ways to generate electricity[1]. This is the Castle Gate Plant near Helper, Utah.
Coal fired power plants provide 49% of consumed electricity in the United States. Cleaner burning technologies continue to make coal fired power one of the cheapest ways to generate electricity[1]. This is the Castle Gate Plant near Helper, Utah.

The demand for electricity is met in several ways. Large centralized generators have been the primary method thus far.

Distributed generation uses a larger number of smaller generators throughout the electricity network. Some use waste heat from industrial processes, others use fuels that would otherwise be wasted, such as landfill gas. Wind and solar generation tend to be distributed because of the low density of the natural energy they collect.

Methods of generating electricity

Most electric generation is driven by heat engines. The combustion of fossil fuels supplies most of the heat to these engines, with a significant fraction from nuclear fission.

Turbines

Virtually all of the heat engines just mentioned are turbines. Other types of turbines can be driven by wind or falling water. All turbines are driven by a fluid acting as an intermediate energy carrier. These fluids can be:

  • Steam - Water is boiled by nuclear fission, the burning of fossil fuels (coal, natural gas, or petroleum) or biomass. Some power plants use the sun as the heat source: solar parabolic troughs and solar power towers concentrate sunlight to heat a heat transfer fluid, which is then used to produce steam. Another renewable source of heat used to drive a turbine is Geothermal power. Either steam under pressure emerges from the ground and drives a turbine or hot water evaporates a low boiling liquid to create vapour to drive a turbine.
  • Water (hydroelectric) - Turbine blades are acted upon by flowing water, produced by hydroelectric dams or tidal forces.
  • Wind - Most wind turbines generate electricity from naturally occurring wind. Solar updraft towers use wind that is artificially produced inside the chimney by heating it with sunlight, and are more properly seen as forms of solar thermal energy.
  • Hot gas (gas turbine) - Turbines are driven directly by gases produced by the combustion of natural gas or oil.
A combined cycle natural gas power plant near Orem, Utah.
A combined cycle natural gas power plant near Orem, Utah.

Combined cycle gas turbine plants are driven by both steam and gas. They generate power by burning natural gas in a gas turbine and use residual heat to generate additional electricity from steam. These plants offer efficiencies of up to 60%.

Reciprocating engines

A coal-fired power plant in Laughlin, Nevada U.S.A. Owners of this plant ceased operations after declining to invest in pollution control equipment to comply with pollution regulations.
A coal-fired power plant in Laughlin, Nevada U.S.A. Owners of this plant ceased operations after declining to invest in pollution control equipment to comply with pollution regulations.[4]

Small electricity generators are often powered by reciprocating engines burning diesel, biogas or natural gas. Diesel engines are often used for back up generation, usually at low voltages. Biogas is often combusted where it is produced, such as a landfill or wastewater treatment plant, with a reciprocating engine or a microturbine, which is a small gas turbine.

Photovoltaic panels

Unlike the solar heat concentrators mentioned above, photovoltaic panels convert sunlight directly to electricity. Although sunlight is free and abundant, solar electricity is still usually more expensive to produce than large-scale mechanically generated power due to the cost of the panels. Low-efficiency silicon solar cells have been decreasing in cost though, and multijunction cells with close to 30% conversion efficiency are now commercially available. Over 40% efficiency has been demonstrated in experimental systems.[5] Until recently, photovoltaics were most commonly used in remote sites where there is no access to a commercial power grid, or as a supplemental electricity source for individual homes and businesses. Recent advances in manufacturing efficiency and photovoltaic technology, combined with subsidies driven by environmental concerns, have dramatically accelerated the deployment of solar panels. Installed capacity is growing by 40% per year led by increases in Germany, Japan, California and New Jersey.

Other generation methods

Wind-powered turbines usually provide electrical generation in conjunction with other methods of producing power.
Wind-powered turbines usually provide electrical generation in conjunction with other methods of producing power.

Various other technologies have been studied and developed for power generation. Solid-state generation (without moving parts) is of particular interest in portable applications. This area is largely dominated by thermoelectric (TE) devices, though thermionic (TI) and thermophotovoltaic (TPV) systems have been developed as well. Typically, TE devices are used at lower temperatures than TI and TPV systems. Piezoelectric devices are used for power generation from mechanical strain, particularly in power harvesting. Betavoltaics are another type of solid-state power generator which produces electricity from radioactive decay. Fluid-based magnetohydrodynamic (MHD) power generation has been studied as a method for extracting electrical power from nuclear reactors and also from more conventional fuel combustion systems.

Electrochemical electricity generation is also important in portable and mobile applications. Currently, most electrochemical power comes from closed electrochemical cells ("batteries") [6], which are arguably utilized more as storage systems than generation systems, but open electrochemical systems, known as fuel cells, have been undergoing a great deal of research and development in the last few years. Fuel cells can be used to extract power either from natural fuels or from synthesized fuels (mainly electrolytic hydrogen) and so can be viewed as either generation systems or storage systems depending on their use.

No comments: