Thursday, July 31, 2008

Gamma rays and the runaway breakdown theory

Double lightningIt has been discovered in the past 15 years that among the processes of lightning is some mechanism capable of generating gamma rays, which escape the atmosphere and are observed by orbiting spacecraft. Brought to light by NASA's Gerald Fishman in 1994 in an article in Nature, these so-called Terrestrial Gamma-Ray Flashes (TGFs) were observed by accident, while he was documenting instances of extraterrestrial gamma ray bursts observed by the Compton Gamma Ray Observatory (CGRO). TGFs are much shorter in duration, however, lasting only ~1 ms.

Professor Umran Inan of Stanford University linked a TGF to an individual lightning stroke occurring within 1.5 ms of the TGF event,[25] proving for the first time that the TGF was of atmospheric origin and associated with lightning strikes.

CGRO recorded only about 77 events in 10 years; however, more recently the RHESSI spacecraft, as reported by David Smith of UC Santa Cruz, has been observing TGFs at a much higher rate, indicating that these occur ~50 times per day globally (still a very small fraction of the total lightning on the planet). The energy levels recorded exceed 20 MeV.

Scientists from Duke University have also been studying the link between certain lightning events and the mysterious gamma ray emissions that emanate from the Earth's own atmosphere, in light of newer observations of TGFs made by RHESSI. Their study suggests that this gamma radiation fountains upward from starting points at surprisingly low altitudes in thunderclouds.

Steven Cummer, from Duke University's Pratt School of Engineering, said, "These are higher energy gamma rays than come from the sun. And yet here they are coming from the kind of terrestrial thunderstorm that we see here all the time."

Early hypotheses of this pointed to lightning generating high electric fields at altitudes well above the cloud, where the thin atmosphere allows gamma rays to easily escape into space, known as "relativistic runaway breakdown", similar to the way sprites are generated. Subsequent evidence has cast doubt, though, and suggested instead that TGFs may be produced at the tops of high thunderclouds. Though hindered by atmospheric absorption of the escaping gamma rays, these theories do not require the exceptionally high electric fields that high altitude theories of TGF generation rely on.

The role of TGFs and their relationship to lightning remains a subject of ongoing scientific study.


[edit] Re-strike

Lightning is a highly visible form of energy transfer.High speed videos (examined frame-by frame) show that most lightning strikes are made up of multiple individual strokes. A typical strike is made of 3 to 4 strokes. There may be more.[21]

Each re-strike is separated by a relatively large amount of time, typically 40 to 50 milliseconds. Re-strikes can cause a noticeable "strobe light" effect.[21]

Each successive stroke is preceded by intermediate dart leader strokes again to, but weaker than, the initial stepped leader. The stroke usually re-uses the discharge channel taken by the previous stroke.[21]

The variations in successive discharges are the result of smaller regions of charge within the cloud being depleted by successive strokes.[citation needed]

The sound of thunder from a lightning strike is prolonged by successive strokes.


[edit] Types of lightning

Cloud-to-cloud lightning, Steinenbronn, GermanySome lightning strikes take on particular characteristics; scientists and the public have given names to these various types of lightning. Most lightning is streak lightning. This is nothing more than the return stroke, the visible part of the lightning stroke. Because most of these strokes occur inside a cloud, we do not see many of the individual return strokes in a thunderstorm.

The return stroke of a lightning bolt, which is the visible bolt itself, follows a charge channel only about a half-inch (1.3 cm) wide. Most lightning bolts are about a mile (1.6 km) long.[14]


[edit] Positive lightning

Anvil to ground (Bolt from the blue) lightning strikeSee also: High_voltage#Lightning
Positive lightning, also known colloquially as a "bolt from the blue" makes up less than 5% of all lightning.[26] It occurs when the leader forms at the positively charged cloud tops, with the consequence that a negatively charged streamer issues from the ground. The overall effect is a discharge of positive charges to the ground. Research carried out after the discovery of positive lightning in the 1970s showed that positive lightning bolts are typically six to ten times more powerful than negative bolts, last around ten times longer, and can strike tens of kilometres/miles from the clouds.[27] The voltage difference for positive lightning must be considerably higher, due to the tens of thousands of additional metres/feet the strike must travel. During a positive lightning strike, huge quantities of ELF and VLF radio waves are generated.[28]

As a result of their greater power, positive lightning strikes are considerably more dangerous. At the present time, aircraft are not designed to withstand such strikes, since their existence was unknown at the time standards were set, and the dangers unappreciated until the destruction of a glider in 1999.[29]

One type of positive lightning is Anvil to Ground, since it emanates from the anvil top of a cumulonimbus cloud where the ice crystals are positively charged. The leader stroke of lightning issues forth in a nearly horizontal direction until it veers toward the ground. These usually occur kilometers/miles from (and often ahead of) the main storm and will sometimes strike without warning on a sunny day. An anvil-to-ground lightning bolt is a sign of an approaching storm, and if one occurs in a largely clear sky, it is known colloquially as a "Bolt from the blue."[30]

Positive lightning is also now believed to have been responsible for the 1963 in-flight explosion and subsequent crash of Pan Am Flight 214, a Boeing 707.[31] Subsequently, aircraft operating in U.S. airspace have been required to have lightning discharge wicks to reduce the chances of a similar occurrence.

Positive lightning has also been shown to trigger the occurrence of upper atmosphere lightning. It tends to occur more frequently in winter storms and at the end of a thunderstorm.[32]

An average bolt of positive lightning carries a current of up to 300 kA (kiloamperes) (about ten times as much current as a bolt of negative lightning), transfers a charge of up to 300 coulombs, has a potential difference up to 1 gigavolt (one billion volts), and lasts for hundreds of milliseconds, with a discharge energy of up to 300 GJ (gigajoules) (a billion joules).[citation needed]

No comments: