Friday, December 3, 2010

ECG - Electrocardiogram

Electrocardiogram Introduction

The electrocardiogram (ECG or EKG) is a diagnostic tool that measures and records the electrical activity of the heart in exquisite detail. Interpretation of these details allows diagnosis of a wide range of heart conditions. These conditions can vary from minor to life threatening.

The term electrocardiogram was introduced by Willem Einthoven in 1893 at a meeting of the Dutch Medical Society. In 1924, Einthoven received the Nobel Prize for his life's work in developing the ECG.

The ECG has evolved over the years.

* The standard 12-lead ECG that is used throughout the world was introduced in 1942.

* It is called a 12-lead ECG because it examines the electrical activity of the heart from 12 points of view.

* This is necessary because no single point (or even 2 or 3 points of view) provides a complete picture of what is going on.

* To fully understand how an ECG reveals useful information about the condition of your heart requires a basic understanding of the anatomy (that is, the structure) and physiology (that is, the function) of the heart.



Unipolar vs. bipolar leads

There are two types of leads: unipolar and bipolar. Bipolar leads have one positive and one negative pole.[21] In a 12-lead ECG, the limb leads (I, II and III) are bipolar leads. Unipolar leads also have two poles, as a voltage is measured; however, the negative pole is a composite pole (Wilson's central terminal) made up of signals from lots of other electrodes.[22] In a 12-lead ECG, all leads besides the limb leads are unipolar (aVR, aVL, aVF, V1, V2, V3, V4, V5, and V6).

Wilson's central terminal VW is produced by connecting the electrodes, RA; LA; and LL, together, via a simple resistive network, to give an average potential across the body, which approximates the potential at infinity (i.e. zero):

V_W = \frac{1}{3}(RA+LA+LL).

[edit] Augmented limb leads

Leads aVR, aVL, and aVF are augmented limb leads (after their inventor Dr. Emanuel Goldberger known collectively as the Goldberger's leads). They are derived from the same three electrodes as leads I, II, and III. However, they view the heart from different angles (or vectors) because the negative electrode for these leads is a modification of Wilson's central terminal. This zeroes out the negative electrode and allows the positive electrode to become the "exploring electrode". This is possible because Einthoven's Law states that I + (−II) + III = 0. The equation can also be written I + III = II. It is written this way (instead of I − II + III = 0) because Einthoven reversed the polarity of lead II in Einthoven's triangle, possibly because he liked to view upright QRS complexes. Wilson's central terminal paved the way for the development of the augmented limb leads aVR, aVL, aVF and the precordial leads V1, V2, V3, V4, V5 and V6.

* Lead augmented vector right (aVR) has the positive electrode (white) on the right arm. The negative electrode is a combination of the left arm (black) electrode and the left leg (red) electrode, which "augments" the signal strength of the positive electrode on the right arm:

aVR = RA - \frac{1}{2} (LA + LL).

* Lead augmented vector left (aVL) has the positive (black) electrode on the left arm. The negative electrode is a combination of the right arm (white) electrode and the left leg (red) electrode, which "augments" the signal strength of the positive electrode on the left arm:

aVL = LA - \frac{1}{2} (RA + LL).

* Lead augmented vector foot (aVF) has the positive (red) electrode on the left leg. The negative electrode is a combination of the right arm (white) electrode and the left arm (black) electrode, which "augments" the signal of the positive electrode on the left leg:

aVF = LL - \frac{1}{2} (RA + LA).

The augmented limb leads aVR, aVL, and aVF are amplified in this way because the signal is too small to be useful when the negative electrode is Wilson's central terminal. Together with leads I, II, and III, augmented limb leads aVR, aVL, and aVF form the basis of the hexaxial reference system, which is used to calculate the heart's electrical axis in the frontal plane. The aVR, aVL, and aVF leads can also be represented using the I and II limb leads:

No comments: