Friday, December 3, 2010

SCADA

SCADA stands for supervisory control and data acquisition. It generally refers to industrial control systems: computer systems that monitor and control industrial, infrastructure, or facility-based processes, as described below:

* Industrial processes include those of manufacturing, production, power generation, fabrication, and refining, and may run in continuous, batch, repetitive, or discrete modes.
* Infrastructure processes may be public or private, and include water treatment and distribution, wastewater collection and treatment, oil and gas pipelines, electrical power transmission and distribution, Wind farms, civil defense siren systems, and large communication systems.
* Facility processes occur both in public facilities and private ones, including buildings, airports, ships, and space stations. They monitor and control HVAC, access, and energy consumption.

SCADA systems have evolved through 3 generations as follows:[citation needed]
First generation: "Monolithic"

In the first generation, computing was done by mainframe computers. Networks did not exist at the time SCADA was developed. Thus SCADA systems were independent systems with no connectivity to other systems. Wide Area Networks were later designed by RTU vendors to communicate with the RTU. The communication protocols used were often proprietary at that time. The first-generation SCADA system was redundant since a back-up mainframe system was connected at the bus level and was used in the event of failure of the primary mainframe system.
Second generation: "Distributed"

The processing was distributed across multiple stations which were connected through a LAN and they shared information in real time. Each station was responsible for a particular task thus making the size and cost of each station less than the one used in First Generation. The network protocols used were still mostly proprietary, which led to significant security problems for any SCADA system that received attention from a hacker. Since the protocols were proprietary, very few people beyond the developers and hackers knew enough to determine how secure a SCADA installation was. Since both parties had invested interests in keeping security issues quiet, the security of a SCADA installation was often badly overestimated, if it was considered at all.
Third generation: "Networked"

These are the current generation SCADA systems which use open system architecture rather than a vendor-controlled proprietary environment. The SCADA system utilizes open standards and protocols, thus distributing functionality across a WAN rather than a LAN. It is easier to connect third party peripheral devices like printers, disk drives, and tape drives due to the use of open architecture. WAN protocols such as Internet Protocol (IP) are used for communication between the master station and communications equipment. Due to the usage of standard protocols and the fact that many networked SCADA systems are accessible from the Internet, the systems are potentially vulnerable to remote cyber-attacks. On the other hand, the usage of standard protocols and security techniques means that standard security improvements are applicable to the SCADA systems, assuming they receive timely maintenance and updates.
Trends in SCADA

There is a trend for PLC and HMI/SCADA software to be more "mix-and-match". In the mid 1990s, the typical DAQ I/O manufacturer supplied equipment that communicated using proprietary protocols over a suitable-distance carrier like RS-485. End users who invested in a particular vendor's hardware solution often found themselves restricted to a limited choice of equipment when requirements changed (e.g. system expansions or performance improvement). To mitigate such problems, open communication protocols such as IEC IEC 60870-5-101 or 104, IEC 61850, DNP3 serial, and DNP3 LAN/WAN became increasingly popular among SCADA equipment manufacturers and solution providers alike. Open architecture SCADA systems enabled users to mix-and-match products from different vendors to develop solutions that were better than those that could be achieved when restricted to a single vendor's product offering.

Towards the late 1990s, the shift towards open communications continued with individual I/O manufacturers as well, who adopted open message structures such as Modbus RTU and Modbus ASCII (originally both developed by Modicon) over RS-485. By 2000, most I/O makers offered completely open interfacing such as Modbus TCP over Ethernet and IP.

The North American Electric Reliability Corporation (NERC) has specified that electrical system data should be time-tagged to the nearest millisecond. Electrical system SCADA systems provide this Sequence of events recorder function, using Radio clocks to synchronize the RTU or distributed RTU clocks.

SCADA systems are coming in line with standard networking technologies. Ethernet and TCP/IP based protocols are replacing the older proprietary standards. Although certain characteristics of frame-based network communication technology (determinism, synchronization, protocol selection, environment suitability) have restricted the adoption of Ethernet in a few specialized applications, the vast majority of markets have accepted Ethernet networks for HMI/SCADA.

With the emergence of software as a service in the broader software industry, a few vendors have begun offering application specific SCADA systems hosted on remote platforms over the Internet. This removes the need to install and commission systems at the end-user's facility and takes advantage of security features already available in Internet technology, VPNs and SSL. Some concerns include security,[2] Internet connection reliability, and latency.

SCADA systems are becoming increasingly ubiquitous. Thin clients, web portals, and web based products are gaining popularity with most major vendors. The increased convenience of end users viewing their processes remotely introduces security considerations. While these considerations are already considered solved in other sectors of Internet services, not all entities responsible for deploying SCADA systems have understood the changes in accessibility and threat scope implicit in connecting a system to the Internet.

No comments: